Exercise 10

Find the general solution for the following initial value problems:

$$
u^{\prime \prime}+9 u=0, \quad u(0)=1, u^{\prime}(0)=0
$$

Solution

This is a homogeneous linear ODE with constant coefficients, so the solution is of the form, $u=e^{r x}$.

$$
u=e^{r x} \quad \rightarrow \quad u^{\prime}=r e^{r x} \quad \rightarrow \quad u^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}+9 e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+9=0
$$

Factor the left side.

$$
(r+3 i)(r-3 i)=0
$$

$r=-3 i$ or $r=3 i$, so the general solution is

$$
u(x)=C_{1} e^{-3 i x}+C_{2} e^{3 i x}
$$

But this can be written in terms of sine and cosine by using Euler's formula. Therefore,

$$
u(x)=A \cos 3 x+B \sin 3 x .
$$

Because we're given initial conditions, we can determine A and B.

$$
\begin{array}{rlrl}
u^{\prime}(x) & =-3 A \sin 3 x & +3 B \cos 3 x \\
& & \\
u(0) & =A & \rightarrow & A=1 \\
u^{\prime}(0) & =3 B & & B=0
\end{array}
$$

Therefore,

$$
u(x)=\cos 3 x
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =-3 \sin 3 x \\
u^{\prime \prime} & =-9 \cos 3 x .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}+9 u=-2 \cos 3 x+2 \cos 3 \bar{x}=0,
$$

which means this is the correct solution.

